
Representation and generative learning

Szu-Chi Chung

Department of Applied Mathematics, National Sun Yat-sen University

Representation matters

2

 Many tasks can be solved by designing the

right set of features for that task, then providing

these features to a simple algorithm

 For example, a useful feature for detecting whether

an e-mail is a spam or not is to count the number of

occurrences of the word such as “congratulations,”

“free,” and “amazing”

 However, for many tasks, it is difficult to know what

features should be extracted

 One solution is to use machine learning to discover not

only the mapping from representation to output but also

the representation itself. This approach is known as

representation learning

https://www.deeplearningbook.org/

https://www.deeplearningbook.org/

Deep Learning is one way to learn features

 Finding all patterns = short description of raw data that can be used in

downstream task

3

 Recipe is clear: Collect a large labeled dataset,

train a model, deploy. Good data and sufficient

data are what we need

 Unfortunately, having plenty of unlabeled data

and little labeled data is common. Labeling

instances is time-consuming and costly

 Deep Unsupervised Learning - to learn

representations without labels

https://www.deeplearningbook.org/

https://www.deeplearningbook.org/

Deep Unsupervised Learning and Generative Learning

 Autoencoders can learn dense representations of the input data, called latent

representations, embedding, or codings, without any supervision

 Serve as dimension reduction and visualization tool

 Acts as feature detectors and for unsupervised pretraining of deep neural networks

 Some are generative models!

 Generative adversarial networks (GANs) can generate realistic data

 Augmenting a dataset

 Colorization, image editing and super-resolution

 Generating tabular data, text, audio, time series…

 Diffusion models

 Easier to train but are much slower for inference

 Generate higher-quality images

4

https://thisxdoesnotexist.com/

Generative model

5 https://speech.ee.ntu.edu.tw/~hylee/ml/2023-spring.php

https://speech.ee.ntu.edu.tw/~hylee/ml/2023-spring.php

Generative model

6 https://speech.ee.ntu.edu.tw/~hylee/ml/2023-spring.php

https://speech.ee.ntu.edu.tw/~hylee/ml/2023-spring.php

1. AutoEncoder - Efficient data representation

 Pattern detection

 40, 27, 25, 36, 81, 57, 10, 73, 19, 68

 50, 48, 46, 44, 42, 40, 38, 36, 34, 32, 30, 28, 26, 24, 22, 20, 18, 16, 14

7

 Chess players can memorize the

positions of all the pieces in a

game by looking at the board

for just five seconds

 This was only the case when the

pieces were placed in realistic.

They see chess patterns more easily

Reconstructions

1. Linear autoencoder are similar to PCA

 Recall that if the data matrix 𝑋 is column-centered. We have

min
𝑍∈𝑅𝑛×𝑀,Φ∈𝑅𝑝×𝑀

{෍

𝑗=1

𝑝

෍

𝑖=1

𝑛

(𝑥𝑖𝑗 − ෍

𝑚=1

𝑀

(Φ𝑗𝑚𝑥𝑖𝑗)Φ𝑗𝑚)
2}

 መ𝑍 = 𝑋෡Φ and ෝΦ are the first 𝑀 principal components score (coding) and loading vectors

(parameters)

 The autoencoder has a similar loss

min
𝜃1𝜃2

{෍

𝑖=1

𝑛

(𝑥𝑖 − 𝑝𝜃2(𝑞𝜃1 𝑥𝑖))
2}

 Note that it can also use nonlinear activation function

8 𝑞𝜃1 𝑝𝜃2

Stacked autoencoders

 Autoencoders can have multiple hidden layers called Stacked Autoencoders

 Be careful not to make the autoencoder too powerful. An encoder that just learns to map

each input to a single arbitrary number (decoder learns the reverse mapping) is not useful

 The architecture is usually symmetric

9

Reconstructions of Fashion MNIST with MSE loss

Dimensional reduction and visualization

 Visualization the embedding (with the help of t-SNE)

 One strategy is to use an autoencoder to reduce the dimensionality down to a reasonable

level, then use another dimensionality reduction algorithm for visualization

 Cope with large dataset

10

Convolutional/Recurerent Autoencoders

 If you are dealing with images, CNNs are far better suited than dense networks

to work with images

 Use the convolution layer in the encoder and transpose convolutional layers in the decoder

 Again, try to use the pyramid design

 If you want to build an autoencoder for sequences, RNNs may be better suited

 The encoder is typically a sequence-to-vector RNN which compresses the input sequence

down to a single vector. The decoder is a vector-to-sequence RNN that does the reverse

11

https://github.com/vdumoulin/conv_arithmetic

Denoising Autoencoders

 Another way to force the autoencoder to learn useful features is to add noise to

its inputs, training it to recover the original, noise-free inputs

 The noise can be pure Gaussian noise added to the inputs, or it can be randomly switched-

off inputs, just like in dropout

12

Sparse Autoencoders

 Another constraint that often leads to good feature extraction is sparsity

 By adding an appropriate term to the cost function, the autoencoder is pushed to reduce the

number of active neurons in the coding layer!

13

 In practice, you can use sigmoid

and L1 or L2 regularization in the

coding layer

 Or we can measure the actual

sparsity of the coding layer at each

training iteration, and penalize the

model when the measured sparsity

differs from a target sparsity

Samples

Neurons in latent space

Neurons in the

codling layer

2. Variational AutoEncoders (VAE)

 Properties of VAE

1. They are probabilistic autoencoders, their outputs are partly determined by chance, even

after training. They turn the input into the parameters of a statistical distribution: a mean

and a variance

2. They can learn smooth latent spaces and they are generative autoencoders, meaning that

they can generate new data that look like they were sampled from the training set

3. It performs variational Bayesian inference, which is an efficient way to perform

approximate Bayesian inference (see appendix)

14

Variational Autoencoders

 Instead of directly producing a

coding for a given input, the

encoder produces a mean coding μ

and a variant of standard deviation

log 𝜎2 (for numerical stability)

 The actual coding is then sampled

randomly from a Gaussian distribution

 One great consequence is that after

training a variational autoencoder, you

can very easily generate a new

instance

15

z = μ + exp((log 𝜎2)/2) ∗ 𝜀

Variational autoencoder

 The loss function

16

Reconstruction loss

MNIST Results

Regularization loss

https://www.jeremyjordan.me/variational-autoencoders/

Feature disentangle through VAE

 If we observe that the latent distributions appear to be very tight, we may

decide to give higher weight to the KL divergence term with a parameter 𝛽 > 1,

encouraging the network to learn broader distributions

17

 As it turns out, by placing a larger

emphasis on the KL divergence term

we're also implicitly enforcing that

the learned latent dimensions are

uncorrelated (through our simplifying

assumption of a diagonal covariance

matrix)

 This is the idea of feature disentangle

Semantic interpolation through VAE

 Variational autoencoders make it possible to perform semantic interpolation:

instead of interpolating two images at the pixel level (which would look as if

the two images were overlaid), we can interpolate at the codings level

18

 We first run both images through the

encoder, then we interpolate the two

codings we get, and finally we

decode the interpolated codings to get

the final image

 Certain directions in the space may

encode interesting axes of variation

in the original data

https://medium.com/vitrox-publication/generative-modeling-with-

variational-auto-encoder-vae-fc449be9890e

https://medium.com/vitrox-publication/generative-modeling-with-variational-auto-encoder-vae-fc449be9890e

3. Generative adversarial networks

 Generative adversarial networks (GANs), introduced in 2014 by Goodfellow et

al. enable the generation of fairly realistic synthetic images by forcing the

generated images to be statistically almost indistinguishable from real ones

 An intuitive way to understand GANs is to imagine a forger trying to create a fake Picasso

painting. At first, the forger is pretty bad at the task. He mixes some of his fakes with

authentic Picassos and shows them all to an art dealer

1. The art dealer makes an authenticity assessment for each painting and gives the forger

feedback about what makes a Picasso look like a Picasso

2. The forger goes back to his studio to prepare some new fake

3. As time goes on, the forger becomes increasingly competent at imitating the style of

Picasso, and the art dealer becomes increasingly expert at spotting fakes. In the end, they

have on their hands some excellent fake Picassos

19

Generative Adversarial Networks

 Generator (forger)

 Takes a random distribution as input

(typically Gaussian) and outputs some data.

You can think of the random inputs as the

latent representations of the image to be

generated

 The generator offers the same functionality

as a decoder in a variational autoencoder

 Discriminator (art dealer)

 Takes either a fake image from the

generator or a real image from the training

set as input, and must guess whether the

input image is fake or real

20

𝑧

Training GAN

 In the first phase, we train the discriminator (generator are fixed)

 A batch of real images is sampled from the training set and is completed with an equal

number of fake images produced by the generator. The labels are set to 0 for fake images

and 1 for real images, and the discriminator is trained using the binary cross-entropy loss

 In the second phase, we train the generator (discriminators are fixed)

 We first use it to produce another batch of fake images, and once again the discriminator is

used to tell whether the images are fake or real. The loss on the right-hand side could have

a larger gradient for a bad sample

21
𝐷(𝐺(𝑧))

− log𝐷(𝐺(𝑧))

log(1 − 𝐷 𝐺 𝑧)
Higher gradient signal

Training GAN

 That’s what a GAN is: a forger network and an expert network, each being

trained to beat the other

 Remarkably, a GAN is a system where the optimization minimum isn’t fixed. Normally,

gradient descent consists of rolling down hills in a static loss landscape. But with a GAN,

every step taken down the hill changes the entire landscape a little

 It’s a dynamic system where the optimization process is seeking not a minimum, but an

equilibrium between two forces. For this reason, GANs are notoriously difficult to train

22

https://poloclub.github.io/ganlab/

 Vector arithmetic, semantic interpolation and feature disentangle - DCGANs

can learn quite meaningful latent representations

Applications – Deep Convolutional GAN

23

https://paperswithcode.com/method/dcgan

4. Diffusion model

 The ideas behind diffusion models have been around for many years, but they

were first formalized in their modern form in 2015

 In 2020, Jonathan Ho et al. from UC Berkeley managed to build a diffusion model capable

of generating highly realistic images, which they called a Denoising Diffusion

Probabilistic Model (DDPM)

 OpenAI analyzed the DDPM architecture and proposed several improvements that allowed

DDPMs to become popular

 DDPMs are much easier to train than GANs, but the generated images are more diverse

and of even higher quality. The main downside of DDPMs, as you will see, is that they take

a very long time to generate images compared to GANs or VAEs

24

Forward/backward process

 Forward process: We add a little bit of Gaussian noise to the image, with mean

0 and variance 𝛽𝑡 and rescale by 1 − 𝛽𝑡 at each step:

𝑥𝑡 = 1 − 𝛽𝑡𝑥𝑡−1 + 𝛽𝑡𝜀 → 𝑞 𝑥𝑡 𝑥𝑡−1 = 𝑁(1 − 𝛽𝑡𝑥𝑡−1, 𝛽𝑡𝐼)

 We can train a model that can perform the reverse process: going from 𝑥𝑡 to

𝑥𝑡−1. We can then use it to remove a tiny bit of noise from an image and repeat

the operation many times until all the noise is gone

25

Diffusion process (no training is needed)

Denosing U-Net

https://udlbook.github.io/udlbook/

Forward/backward process

 There’s a shortcut for the forward process:

𝑞 𝑥𝑡 𝑥0 = 𝑁 ത𝛼𝑡𝑥0, 1 − ത𝛼𝑡 𝐼

 The part of the variance that comes from the initial distribution shrinks by a factor of 1 −
𝛽𝑡 at each step. If we define 𝛼𝑡 = 1 − 𝛽𝑡 , ത𝛼𝑡= ς𝑖=1

𝑡 𝛼𝑡, we want to schedule so it shrinks

down from 1 to 0 gradually between time steps 0 and 𝑇 (noise will become greater)

26

 The model is then trained to reverse

that process

 Given a noisy image produced by the

forward process, and time 𝑡, the model

is trained to predict the total noise that

was added to the original image

https://speech.ee.ntu.edu.tw/~hylee/ml/2023-spring.php

https://speech.ee.ntu.edu.tw/~hylee/ml/2023-spring.php

Forward/backward process

 To train the model, we will randomly draw samples from different time steps

 The U-Net is employed since the size of output should be the same as input

27

 The model will need to

process both images and

times which may be

encoded using a sinusoidal

encoding

 There is no shortcut for the

reverse process, therefore is

very slow!

Diffusion process (no training is needed)

Denoising U-Net

28

Text to image using diffusion model

 Diffusion models have made tremendous progress recently in generative

models. The framework trains three models separately:

29

noise

Intermediate results

(small image or latent

representation)

GPT, BERT

Autoencoder

Forward/backward process

30

+noise

Diffusion process (no training is needed)

Denosing U-Net

Decoder

Inference

Diffusion model

 Recent advances

 Latent diffusion models, where the diffusion process takes place in latent space rather than

in pixel space

 To achieve this, a powerful autoencoder is used to compress each training image into a

much smaller latent space, where the diffusion process takes place, then the autoencoder is

used to decompress the final latent representation, generating the output image

 Various conditioning techniques to guide the diffusion process using text prompts, images

 Stable diffusion, DALL-E, Midjourney….

31

https://poloclub.github.io/diffusion-explainer/
https://github.com/yenlung/Generative-AI-Book

Conclusion

 Deep representation learning is an actively developed field

 There are three major tools to do this: VAEs, GANs and diffusion model

 VAEs result in highly structured, continuous latent representations and are easier to train

 GANs enable the generation of realistic single-frame images but may not induce latent

spaces with a solid structure and high continuity

 Diffusion models are becoming popular. However, the training/inference time is still a

challenge

32

References

[1] Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 3rd

Edition Chapter 17

[2] Deep learning with Python, 2nd Edition Chapter 12

[3] https://speech.ee.ntu.edu.tw/~hylee/ml/2022-spring.php Lecture 6 and

Lecture 8

[4] https://speech.ee.ntu.edu.tw/~hylee/ml/2023-spring.php

[5] https://udlbook.github.io/udlbook/ Chapter 15, 17, 18

33

https://www.oreilly.com/library/view/hands-on-machine-learning/9781098125967/
https://www.manning.com/books/deep-learning-with-python-second-edition
https://speech.ee.ntu.edu.tw/~hylee/ml/2022-spring.php
https://speech.ee.ntu.edu.tw/~hylee/ml/2023-spring.php
https://udlbook.github.io/udlbook/

Appendix

34

Resources

 Tutorials

 https://sites.google.com/view/berkeley-cs294-158-sp24/home

 Different VAE

 https://github.com/probml/pyprobml/tree/master/deprecated/vae

 https://github.com/AntixK/PyTorch-VAE

 https://mlberkeley.substack.com/p/vq-vae

 Different GAN

 https://d2l.ai/chapter_generative-adversarial-networks/index.html

 https://github.com/probml/pyprobml/tree/master/deprecated/gan

 https://github.com/lucidrains/stylegan2-pytorch

 https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix

 https://github.com/XingangPan/DragGAN

35

https://sites.google.com/view/berkeley-cs294-158-sp24/home
https://github.com/AntixK/PyTorch-VAE
https://github.com/AntixK/PyTorch-VAE
https://mlberkeley.substack.com/p/vq-vae
https://d2l.ai/chapter_generative-adversarial-networks/index.html
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
https://github.com/XingangPan/DragGAN

Resources

 Diffusion model

 https://github.com/huggingface/diffusers

 https://keras.io/guides/keras_cv/generate_images_with_stable_diffusion/

 https://github.com/fastai/fastdiffusion

 https://github.com/pix2pixzero/pix2pix-zero

 Playground

 https://poloclub.github.io/ganlab/

 https://poloclub.github.io/diffusion-explainer/

36

https://github.com/huggingface/diffusers
https://keras.io/guides/keras_cv/generate_images_with_stable_diffusion/
https://github.com/fastai/fastdiffusion
https://github.com/pix2pixzero/pix2pix-zero
https://poloclub.github.io/ganlab/
https://poloclub.github.io/diffusion-explainer/

Inference

 Estimate the fix parameters 𝜃 that maximize the observed log-likelihood

37

 It is hard to explicitly find out

𝑝𝜃(𝑥𝑖). It is simpler to compute the

full likelihood of each observation

𝑝𝜃(𝑥𝑖 , ℎ𝑖). However, the

computation now becomes

intractable

 Distribution of 𝐻 is inaccessible.

Use a distribution 𝑞 for hidden

variables 𝐻, and maximizing a

series of tractable lower-bounds

𝐿(𝑞,𝑋,𝜃) for 𝐿(𝑋,𝜃) iteratively

https://arxiv.org/abs/2201.02867

https://probml.github.io/pml-book/book2.html
https://arxiv.org/abs/2201.02867

Evidence Lower Bound (ELBO)

 𝐿(𝑞, 𝑋, 𝜃) are found for the fact that for any distribution 𝑞𝑖 on the variables ℎ𝑖,
the observed log-likelihood can be written as the sum of two terms

 The Evidence Lower Bound is the function

38

https://arxiv.org/abs/2201.02867

Inference Methods Based on an ELBO

 The choices of the distributions 𝑞𝑖
(𝑡)

at each iteration 𝑡

39

 Choosing 𝑞𝑖
𝑡
𝑧 = 𝑝𝜃 𝑡 (ℎ𝑖|𝑥𝑖) makes the

lower bound tangent to 𝐿(𝑋,𝜃) at 𝜃 = 𝜃(𝑡)

which is the Expectation-Maximization (EM)

algorithm

 For computational reasons, we can choose to

have 𝑞𝑖
𝑡
𝑧 approximate the posteriors

𝑝𝜃 𝑡 (ℎ𝑖|𝑥𝑖) by

 Their “mode", i.e. the value ෠ℎ𝑖 of ℎ𝑖 that

maximizes them: 𝑞𝑖 effectively becomes a Dirac

distribution at ෠ℎ𝑖
 A general distribution 𝑞𝑖 within a family 𝑄

https://www.hds.utc.fr/~tdenoeux/dokuwiki/_media/en/em_algorithm_slides.pdf

Inference Methods Based on an ELBO

 The modal approximation in the EM algorithm speeds up the E-step; yet it has

the drawback of summarizing the posterior distribution by a single estimate

 Variational Inference (VI) (Variational Bayes) has appeared as a compromise between EM

and modal EM during the computation of the E-step.

 VI replaces the evaluation of the posterior of the latent variables, by an optimization

converging to an approximation 𝑞 of this posterior distribution. VI selects 𝑞 from some

parametric family of distributions 𝑄, called the “variational family“

 The variational family 𝑄 = 𝑞η = 𝑁 𝜇, 𝜎 η = (𝜇, 𝜎)} with parameters η is typically

chosen to be a family of Gaussian distributions

40

Inference Methods Based on an ELBO

 The previous methods have the drawback of learning one (approximate)

posterior for each hidden variable in ℎ𝑖, and for each image 𝑖. This is

computationally expensive and increase with 𝑛
 Amortized inference (AI) collapses the 𝑛 optimizations problems of the E-step into one

 Instead of solving an optimization problem for each 𝑖 and finding ෠ℎ𝑖 or η𝑖 defining 𝑞η𝑖 , AI

optimizes the parameters ξ of a function 𝐸𝑛𝑐ξ that predicts ෠ℎ𝑖 or η𝑖 when given 𝑥𝑖

 The function 𝐸𝑛𝑐 is traditionally called an encoder. Inference is made more tractable, but

adds an additional error, called the amortization error

41

Inference Methods Based on an ELBO

 The main realizations of amortized variational EM in come through variational

autoencoders

42

Training GAN

43

Training GAN

 The biggest difficulty is called mode collapse: this is when the generator’s

outputs gradually become less diverse

 Suppose that the generator gets better at producing convincing shoes than any other class.

It will fool the discriminator a bit more with shoes, and this will encourage it to produce

even more images of shoes. Gradually, it will forget how to produce anything else.

Meanwhile, the only fake images that the discriminator will see will be shoes, so it will

also forget how to discriminate fake images of other classes

44
Data Distribution

Generated

Distribution

Training GAN

 Tricks

1. Replace any pooling layers with strided convolutions (in the discriminator) and use

transposed convolutions (in the generator)

2. Use batch normalization in both the generator and the discriminator, except in the

generator’s output layer and the discriminator’s input layer

3. Use LeakyReLU/ELU instead of a ReLU since sparse gradients can hinder GAN training

4. Adding random noise to the labels for the discriminator since stochasticity is good for

inducing robustness. Because GAN training results in a dynamic equilibrium, GANs are

likely to get stuck in all sorts of ways

5. In generated images, it’s common to see artifacts. To fix this, use a kernel size that’s

divisible by the stride size whenever we use a strided convolution

6. Proposing new cost functions and architecture or https://github.com/soumith/ganhacks

45

https://github.com/eriklindernoren/Keras-GAN
https://github.com/soumith/ganhacks

Applications – Conditional GAN (Text to Image)

D

(type 2)
scalar

𝑐

𝑥

D

(type 1)
scalar𝑥

Positive example:

Negative example:

G

𝑧Prior distribution
𝑥 = 𝐺(𝑐, 𝑧)

c: train

x is realistic or not

Image

x is realistic or not +

c and x are matched or not

(train ,)

(train ,) (cat ,)

Positive example:

Negative example:

dropout

It is a distribution

https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/gan_v10.pptx

25

https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/gan_v10.pptx

Applications – Conditional GAN with Paired Data (pix2pix)

G

𝑧
𝑥 = 𝐺(𝑐, 𝑧)

𝑐

28

 Application with unsupervised learning is also possible

https://arxiv.org/pdf/1611.07004
https://www.youtube.com/watch?v=6xRAiKAYPxU

48

49

Generative Models for Classification

 Model the distribution of 𝑋 in each of the classes separately, and then use

Bayes theorem to flip things around and obtain Pr(𝑌 |𝑋)
 When we use normal (Gaussian) distributions for each class, this leads to linear or

quadratic discriminant analysis. Other distributions can be used as well!

50

https://www.analyticsvidhya.com/blog/2021/07/deep-understanding-of-discriminative-and-generative-models-in-

machine-learning/

https://www.analyticsvidhya.com/blog/2021/07/deep-understanding-of-discriminative-and-generative-models-in-machine-learning/

Bayes theorem for classification

 According to the Bayes’ theorem:

Pr 𝑌 = 𝑘 𝑋 = 𝑥 =
Pr(𝑌 = 𝑘)× Pr 𝑋 = 𝑥 𝑌 = 𝑘

Pr(𝑋 = 𝑥)

One writes this for discriminant analysis:

𝑝𝑘 𝑥 = Pr 𝑌 = 𝑘 𝑋 = 𝑥 =
𝜋𝑘𝑓𝑘(𝑥)

σ𝑙=1
𝐾 𝜋𝑙𝑓𝑙(𝑥)

 𝑓𝑘(𝑥) = 𝑃𝑟 𝑋 = 𝑥 𝑌 = 𝑘 is the density for 𝑋 in class 𝑘. Here we will use normal

densities for these, separately in each class

 𝜋𝑘 = 𝑃𝑟(𝑌 = 𝑘) is the marginal or prior probability for class 𝑘

 Common classifiers that use different estimates of 𝑓𝑘(𝑥) to approximate the

Bayes classifier: linear discriminant analysis, quadratic discriminant analysis,

and naive Bayes

51

